Virginia Tech™home


Linsey Marr in laboratory.

With research expertise in 10 different thematic areas, the CeZAP affiliated faculty tackle comprehensive and complex problems in infectious diseases through interdisciplinary team approaches including engineering, social, biomedical, veterinary, medical, and plant sciences.

The CeZAP faculty conducts basic and mechanistic research in infectious diseases, and strives to translate into tangible results such as vaccines, antimicrobial drugs, intelligent infrastructure, and diagnostics that benefit the global society.

Through pilot grant programs, CeZAP promotes cross-disciplinary and new scientific collaborations to position Virginia Tech to become more competitive in acquiring large federally-funded center, program, and training grants.

CeZAP Pilot Grant Awards Header image showing food-borne illness, COVID-19, and tick-borne illness

The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens (CeZAP) at Virginia Tech requests pilot grant applications to build interdisciplinary research teams in the broad area of infectious diseases, leading to collaborative extramural grant submissions. These pilot grants are supported financially by Fralin Life Sciences Institute and Agency 229. Priority will be given to proposals seeking to advance CeZAP’s mission to promote and foster interdisciplinary and transdisciplinary research collaborations across different colleges. 

Supported by Fralin Life Sciences Institute, and Agency 229

Brandon Jutras (PI, CALS), Coy Allen (Co-PI, VMCVM); Pablo Sobrado, (Co-I, CALS); Rich Helm (Co-I, CALS)
Title: Reprogramming the peptidoglycan cell-wall of Borrelia burgdorferi to understand, treat, and cure chronic Lyme disease
Summary: Late stage manifestations of Lyme disease, such as Lyme arthritis, are complex and poorly understood. We have discovered that unique fragments of peptidoglycan (PG)—an essential component of the bacterial cell wall— are released by Borrelia burgdorferi, the Lyme disease agent, during growth. Virtually all bacteria have PG but, as it turns out, the chemical composition of B. burgdorferi PG is unique and unlike any previously described. B. burgdorferi PG is capable of both persisting in Lyme arthritis patients’ months after infection and causing arthritis in a mouse model. Here, we propose to alter the chemistry of B. burgdorferi PG and determine the impacts on infection, persistence, and pathogenesis.

Mohamed Seleem (PI, VMCVM), Paul R. Carlier (Co-PI, COS)
Optimization of salicylamide analogs for combating multidrug-resistant Neisseria Gonorrhoeae
Summary: Studies proposed in this grant application build upon advances made in collaborative efforts between the Seleem and Carlier laboratories (College of Veterinary Medicine and College of Science, respectively) over the past few months to optimize the repurposed FDA-approved drug, salicylamide (1a) against Neisseria gonorrhoeae. The Carlier lab will carry out analog design and synthesis while the Seleem lab will perform the antibacterial study with the goal to increase potency and efficacy of salicylamide.

Juhong Chen (PI, CALS/COE), Clay Wright (Co-PI, CALS/COE); Lijuan Yuan (Co-PI, VMCVM); Matthew Moore (Co-PI, University of Massachusetts Amherst)
Title: Development of engineered yeasts to concentrate and purify foodborne viruses for easier detection
Summary: Viruses pose grave threats to public health and the global economy because of their low infectious dose and difficulty of detection. Many analytical methods exist for detection of environmentally present viruses, but upstream concentration is required. However, current viral concentration techniques are not ideal, limiting the ability to detect most viruses routinely. We aim to engineer yeast displaying specific virus-binding peptides on their surface proteins to facilitate concentration and purification of viruses for easier detection.

Michael Schulz (PI, COS), Lijuan Yuan (Co-PI, VMCVM)
Developing Antiviral Polymers to Inhibit Norovirus Infection
Summary: Noroviruses (NoVs) are the most prevalent cause of nonbacterial acute gastroenteritis, but no FDA-approved vaccines or anti-viral drugs currently exist for NoV infection. Antiviral polymers can prevent viral infections but have never been investigated for NoV treatment. We will synthesize the first anti-NoV materials and evaluate them in the gnotobiotic (Gn) pig model. This state-of-the-art animal model will enable us to draw strong translational conclusions about the potential clinical efficacy of these novel antiviral materials.

Song Li (PI, CALS), Juhong Chen (Co-PI, COE/CALS); Boris Vinatzer (Co-PI, CALS)
RACING: Developing a Rapid Assay using CRISPR, artificial Intelligence, and Nanopore meta-Genome sequencing for emerging pathogen detection
Summary: Developing diagnostic assays for emerging pathogens is typically time consuming and cannot meet the need to stop rapidly spreading diseases. Herein, we plan to develop an approach that substantially simplifies the pipeline for diagnostic assay development. Our approach includes: (1) Improve our cutting-edge machine learning algorithms to identify signature nucleotide sequences for pathogens from culture-free metagenomic sequencing data; and (2) optimize a CRISPR-based biosensing system to detect pathogen DNA using these signatures.

Luis Escobar (PI, CNRE), Gill Eastwood (Co-PI, CALS); Mark Ford (Co-PI, CNRE)
Relationship between Lyme disease and land-form variables
Summary: Our goal is to better elucidate the relationship between Lyme disease and other tick-borne diseases and landscape configuration, accounting for microclimate, tick ecology, and other environmental factors. This project is inspired by the research question: Is tick-borne disease transmission predictable in space and time based on quantifiable environmental correlates? The project hypothesis is that predictability of tick occurrence will vary according to the scale studied. We will model the distribution and abundance of ticks responsible of Lyme disease across diverse environmental conditions.

Jonathan Auguste (PI, CALS), Rana Ashkar (Co-PI, COS); Coy Allen (Co-I, VMCVM); Jesse Erasmus (Co-I, HDT Bio Corp) 
Evaluating the safety and efficacy of a novel vaccine strategy for Cache Valley virus
Summary: Cache Valley virus (CVV) is an important zoonotic arthropod-borne virus in North America. CVV can potentially emerge and become a major pathogen of humans, ovine, caprine, bovine, equid, and poultry species, resulting in potentially devastating consequences on our economy, food availability, human and animal health. To circumvent this threat, we will develop an RNA vaccine that demonstrates exceptional immunogenicity and outstanding safety in murine models, and completely protects against all aspects of CVV disease.

Nisha Duggal (PI, VMCVM), Linsey Marr (Co-PI, COE); Stanca Ciupe (Co-PI, COS)
Aerosol transmission potential of SARS-CoV-2 in exhaled breath
Summary: SARS-CoV-2 is a respiratory virus, with transmission occurring via droplets released during coughing and sneezing. SARS-CoV-2 is also detected in air, and asymptomatic individuals may transmit SARS-CoV-2 in aerosols within exhaled breath. Using a hamster model of SARS-CoV-2 transmission, we will measure infectious SARS-CoV-2 in aerosols collected from exhaled breath and quantify the airborne transmission potential of SARS-CoV-2. This work will improve our understanding of SARS-CoV-2 transmission and lead to future work developing interventions.

Clément Vinauger (PI, CALS), Lauren Childs (Co-PI, COS); James Weger-Lucarelli (Co-I, VMCVM)
Effects of altered larval growing conditions on the vectorial capacity of Aedes aegypti mosquitoes
Summary: The environmental growing conditions of mosquito larvae affect their development and, eventually, alter the body size and host-seeking behavior of adult females. Here, we propose a collaborative and multidisciplinary approach to 1) determine the sensory basis of this phenomenon, 2) define its impact on mosquitoes’ ability to transmit viruses, and 3) integrate this new knowledge in a mathematical model linking environmental effects on mosquito traits with their consequences on population dynamics and vectorial capacity.

Gillian Eastwood (PI, CALS), Luis Escobar (Co-PI, CNRE)
The Effect of Forest Degradation on Mosquito Arboviruses
Summary: Landscape changes can influence biodiversity composition and the emergence of outbreaks, triggering spillover flow of pathogenic agents to incidental hosts. We focus on vector-borne disease, and determine vectors of arboviral pathogens in a previously unexplored region of Guatemala which is experiencing habitat destruction of intact pristine forest. By investigating both altered mosquito vector diversity and infection prevalence of mosquitoes in this system, we can define the impact of a deforestation gradient upon disease risk.

CeZAP Pilot Grant RFP.pdf

Information forthcoming...

Information forthcoming...

Information forthcoming...

Fralin Life Sciences Institute
Virginia Tech Corporate Research Center (CRC)
Integrated Life Science Building (ILSB)
1918 Kraft Dr, Room 2036
Blacksburg, VA 24060

Sarah Gouger
CeZAP Coordinator
Phone: 540-231-6084
Integrated Life Sciences Building,
Room 2038